现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(I)求张同学至少取到1道乙类题的概率;
(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是
,且各题答对与否相互独立.用
表示张同学答对题的个数,求
的分布列和数学期望.
在中,角A,B,C所对的边分别为
.
(Ⅰ)叙述并证明正弦定理;
(Ⅱ)设,
,求
的值.
已知在等比数列中,
,且
是
和
的等差中项.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足
,求
的前
项和
.
已知函数,其中实数a为常数.
(I)当a=-l时,确定的单调区间:
(II)若f(x)在区间(e为自然对数的底数)上的最大值为-3,求a的值;
(Ⅲ)当a=-1时,证明.
某市在市内主干道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为O,半径为100m,并与北京路一边所在直线相切于点M.A为上半圆弧上一点,过点A作
的垂线,垂足为B.市园林局计划在△ABM内进行绿化.设△ABM的面积为S(单位:
),
(单位:弧度).
(I)将S表示为的函数;
(II)当绿化面积S最大时,试确定点A的位置,并求最大面积.