如图,某园林绿化单位准备在一直角ABC内的空地上植造一块“绿地△ABD”,规划在△ABD的内接正方形BEFG内种花,其余地方种草,若AB=a,,种草的面积为
,种花的面积为
,比值
称为“规划和谐度”。
(I)试用表示
,
;
(II)若为定值,BC >AB。当
为何值时,“规划和谐度”有最小值?最小值是多少?
如图, 是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.
(Ⅰ)求证:平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段
上一个动点,试确定点
的位置,使得
平面
,并证明你的结论
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为
.
(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为,求
的分布列和数学期望
.
设中的内角
,
,
所对的边长分别为
,
,
,且
,
.
(Ⅰ)当时,求角
的度数;(Ⅱ)求
面积的最大值.
函数,
(1)当时,求
的单调区间;
(2),当
,
时,
恒有解,求
的取值范围.
设数列{an}为前n项和为Sn,,数列{ Sn +2}是以2为公比的等比数列.
(1)求;
(2)抽去数列{an}中的第1项,第4项,第7项,……,第3n-2项,余下的项顺序不变,组成一个新数列{cn},若{cn}的前n项和为Tn,求证:
<≤