如图,三棱柱ABC-A1B1C1的底面是边长为3的正三角形,侧棱AA1垂直于底面ABC,AA1=,D是CB延长线上一点,且BD=BC.
(1)求证:直线BC1∥平面AB1D;
(2)求二面角B1-AD-B的大小;
(3)求三棱锥C1-ABB1的体积。
(本小题满分10分)
设函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若,
恒成立,求实数
的取值范围.
(本小题满分10分)
已知在直角坐标系中,圆锥曲线
的参数方程为
(
为参数),定点
,
是圆锥曲线
的左,右焦点.
(Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点
且平行于直线
的直线
的极坐标方程;
(Ⅱ)在(I)的条件下,设直线与圆锥曲线
交于
两点,求弦
的长.
(本小题满分10分)
如图,AD是⊙O的直径,AB是⊙O的切线,M, N是圆上两点,直线MN交AD的延长线于点C,交⊙O的切线于B,BM=MN=NC=1,求AB的长和⊙O的半径.
(本小题满分12分)
A﹑B﹑C是直线上的三点,向量
﹑
﹑
满足:
-[y+2
]·
+ln(x+1)·
=
;
(Ⅰ)求函数y=f(x)的表达式;
(Ⅱ)若x>0, 证明f(x)>;
(Ⅲ)当时,x
及b
都恒成立,求实数m的取值范围。
(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求
ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=
,求cos
的值及
PF1F2的面积。