在“我爱祖国”演讲比赛中,学校根据初赛成绩在七,八年级分别选出10名同学参加决赛,这些选手的决赛成绩如图所示:
根据上图和上表提供的信息,解答下列问题:(1)请你把上边的表格填写完整;
(2)考虑平均数与方差,你认为 年级的团体成绩更好些;
(3)假设在每个年级的决赛选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些,请说明理由.
已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为 (单位:吨 小时),卸完这批货物所需的时间为 (单位:小时).
(1)求 关于 的函数表达式.
(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?
如图, 是边长为 的等边三角形,其中 是坐标原点,顶点 在 轴正方向上,将 折叠,使点 落在边 上,记为 ,折痕为 .
(1)当 轴时,求点 和 的坐标;
(2)当 轴,且抛物线 经过点 和 时,求抛物线与 轴的交点的坐标;
(3)当点 在 上运动,但不与点 、 重合时,能否使△ 成为直角三角形?若能,请求出此时点 的坐标;若不能,请你说明理由.
已知:如图, 、 是平行四边形 的对角线 上的两点, .
求证:(1) ;
(2) .
不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为 .
(1)试求袋中蓝球的个数;
(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.
某市推出电脑上网包月制,每月收取费用 (元 与上网时间 (小时)的函数关系如图所示,其中 是线段,且 轴, 是射线.
(1)当 ,求 与 之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元的上网费用?
(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?