已知圆C经过P(4,– 2),Q(– 1,3)两点,且在y轴上截得的线段长为,半径小于5.
(1)求直线PQ与圆C的方程.
(2)若直线l∥PQ,且l与圆C交于点A、B,,求直线l的方程.
已知函数的图象经过点
.
(1)求实数的值;
(2)求函数的最小正周期与单调递增区间.
已知某种同型号的瓶饮料中有
瓶已过了保质期.
(1)从瓶饮料中任意抽取
瓶,求抽到没过保质期的饮料的概率;
(2)从瓶饮料中随机抽取
瓶,求抽到已过保质期的饮料的概率.
已知函数(其中
为自然对数的底数).
(1)求函数的单调区间;
(2)定义:若函数在区间
上的取值范围为
,则称区间
为函数
的“域同区间”.试问函数
在
上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.
已知双曲线的中心为原点
,左、右焦点分别为
、
,离心率为
,点
是直线
上任意一点,点
在双曲线
上,且满足
.
(1)求实数的值;
(2)证明:直线与直线
的斜率之积是定值;
(3)若点的纵坐标为
,过点
作动直线
与双曲线右支交于不同的两点
、
,在线段
上去异于点
、
的点
,满足
,证明点
恒在一条定直线上.
已知等差数列的首项为
,公差为
,等比数列
的首项为
,公比为
,
.
(1)求数列与
的通项公式;
(2)设第个正方形的边长为
,求前
个正方形的面积之和
.
(注:表示
与
的最小值.)