(本小题满分14分)如图四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AD=1,侧面PAD是正三角形,且与底面ABCD垂直,Q是AD的中点.
(1)求四棱锥P-ABCD的体积;
(2)M在线段PC上,PM=tPC,问线段BC上是否存在一点R,使得当t∈(0,1)时,总有BQ∥平面MDR?若存在,确定R点位置;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在x轴上,连接它的四个顶点得到的四边形的面积是4,分别连接椭圆上一点(顶点除外)和椭圆的四个顶点,连得线段所在四条直线的斜率的乘积为
,求这个椭圆的标准方程。
已知圆的方程x2+y2=25,点A为该圆上的动点,AB与x轴垂直,B为垂足,点P分有向线段BA的比λ=,
(1)求点P的轨迹方程并化为标准方程形式;
(2)写出轨迹的焦点坐标和准线方程。
解不等式:(1)log 2≤0.
(2)≥0
已知函数(其中
是常数).
(1)若当时,恒有
成立,求实数
的取值范围;
(2)若存在,使
成立,求实数
的取值范围;
甲、乙两地相距12km.A车、B车先后从甲地出发匀速驶向乙地.A车从甲地到乙地需行驶15min;B车从甲地到乙地需行驶10min.若B车比A车晚出发2min:
(1)分别写出A、B两车所行路程关于A车行驶时间的函数关系式;
(2) A、B两车何时在途中相遇?相遇时距甲地多远?