(本小题满分14分)
设函数.
(1) 试问函数能否在
时取得极值?说明理由;
(2) 若a=-1,当时,函数
与
的图像有两个公共点,求c的取值范围.
如图,在三棱拄中,
侧面
,已知
(1)求证:;
(2)试在棱(不包含端点
上确定一点
的位置,
使得;
(3) 在(2)的条件下,求二面角的平面角的正切值.
已知函数的周期为
.
(1)当时,求
的取值范围;
(2)求函数的单调递减区间.
设数列,
满足
,
,且
,
(1)求数列的通项公式;(2)对一切
,证明
成立;
(3)记数列,
的前
项和分别是
,证明
。
若函数f(x)=ax3+bx2+cx+d是奇函数,且
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.
若函数f(x)=ax3+bx2+cx+d是奇函数,且f(x)极小值=f(-)=-.
(1)求函数f(x)的解析式;
(2)求函数f(x)在[-1,m](m>-1)上的最大值;
(3)设函数g(x)=,若不等式g(x)·g(2k-x)≥(-k)2在(0,2k)上恒成立,求实数k的取值范围.