(本小题满分12分)一缉私艇发现在北偏东方向,距离12 nmile的海面上有一走私船正以10 nmile/h的速度沿东偏南
方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东
的方向去追,.求追及所需的时间和
角的正弦值.
.已知f(x)=(x≠-
,a>0),且f(1)=log162,f(-2)=1.
(1)求函数f(x)的表达式;
(2)已知数列{xn}的项满足xn=[1-f(1)][1-f(2)]…[1-f(n)],试求x1,x2,x3,x4;
(3)猜想{xn}的通项.
已知函数f(x)=-(a>0且a≠1),
(1)证明:函数y=f(x)的图象关于点对称;
(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.
一个小朋友在一次玩皮球时,偶然发现一个现象:球从某高度落下后,每次都反弹回原高度的,再落下,再反弹回上次高度的
,如此反复.假设球从100 cm处落下,那么第10次下落的高度是多少?在第10次落地时共经过多少路程?试用伪代码表示其算法.
请设计一个问题,使得该问题的算法如已知的伪代码所示.
已知O是△ABC内任意一点,连结AO、BO、CO并延长交对边于A′,B′,C′,则+
+
=1,这是一道平面几何题,其证明常采用“面积法”.
+
+
=
+
+
=
=1,
请运用类比思想,对于空间中的四面体V—BCD,存在什么类似的结论?并用体积法证明.