已知函数,当x = -1时取得极大值7,当x = 3时
取得极小值;
(1)求的值;
(2)求的极小值。
椭圆的方程为
,离心率为
,且短轴一端点和两焦点构成的三角形面积为1,抛物线
的方程为
,抛物线的焦点F与椭圆的一个顶点重合.
(1)求椭圆和抛物线
的方程;
(2)过点F的直线交抛物线于不同两点A,B,交y轴于点N,已知
的值.
(3)直线交椭圆
于不同两点P,Q,P,Q在x轴上的射影分别为P′,Q′,满足
(O为原点),若点S满足
,判定点S是否在椭圆
上,并说明理由.
已知数列是首项为
,公比
的等比数列,设
.
(1)求证数列的前n项和
;
(2)若对一切正整数n恒成立,求实数m的取值范围.
如图,等腰梯形ABCD,AD//BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,.
(1)证明:;
(2)求二面角A-BP-D的余弦值.
寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度,现从调查人群中随机抽取16名,如果所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶);若幸福度分数不低于8.5分,则该人的幸福度为“幸福”.
(1)求从这16人中随机选取3人,至少有2人为“幸福”的概率;
(2)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“幸福”的人数,求
的分布列及数学期望.
已知函数.
(1)求函数的最小正周期;
(2)在中,若
的值.