游客
题文

. (本小题满分10分)如图,在三棱锥中,底面,点分别在棱上,且
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成的角的大小;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理   
由.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知圆O:x2+y2=2交x轴于AB两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点O作直线PF的垂线交椭圆C的左准线于点Q.(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ与圆相切;
(3)试探究:当点P在圆O上运动时(不与AB重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.

已知动圆轴相切,且过点.
⑴求动圆圆心的轨迹方程;
⑵设为曲线上两点,,求点横坐标的取值范围.

解不等式:

设数列的各项都是正数,.
⑴求数列的通项公式;⑵求数列的通项公式;
⑶求证:.

设函数.
⑴当时,求函数图象上的点到直线距离的最小值;
⑵是否存在正实数,使对一切正实数都成立?若存在,求出的取值范围;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号