. (本小题满分10分)如图,在三棱锥中,
底面
,点
,
分别在棱
上,且
(Ⅰ)求证:平面
;
(Ⅱ)当为
的中点时,求
与平面
所成的角的大小;
(Ⅲ)是否存在点使得二面角
为直二面角?并说明理
由.
(本小题满分12分)
已知等差数列的公差为
,前
项和为
,且
.
(1)求数列的通项公式
与前
项和
;
(2)将数列的前四项抽取其中一项后,剩下三项按原来顺序恰为等比数列
的前三项,记数列
的前
项和为
,若存在
,使得对任意
,总有
成立,求实数
的取值范围.
(本小题满分12分)
已知四棱锥的底面是菱形,
,
,
,
与
交于
点,
,
分别为
,
的中点.
(1)求证:平面
;
(2)求直线与平面
所成角的正弦值.
(本小题满分12分)
在中,角
,
,
所对的边为
,
,
,且满足
.
(1)求角的值;
(2)若且
,求
的取值范围.
(本小题满分12分)
已知椭圆的两个焦点分别为
、
,短轴的两个端点分别为
.
(Ⅰ)若为等边三角形,求椭圆
的方程;
(Ⅱ)若椭圆的短轴长为
,过点
的直线
与椭圆
相交于
两点,且
,
求直线的方程.
(本小题满分12分)
已知函数.
(Ⅰ)当时,求关于
的不等式
解集;
(Ⅱ)当时,若
恒成立,求实数
的最大值.