游客
题文

如图1,在△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕顶点C顺时针旋转30°,得到△ABC.联结AABB,设△ACA′和△BCB′的面积分别为S△ACA′ S△BCB′

(1)直接写出S△ACA′ S△BCB′ 的值                  
(2)如图2,当旋转角为(0°<<180°)时,S△ACA′ S△BCB′ 的比值是否发生变化,若不变请证明;若改变,写出变化后的比值(可用含的代数式表示).

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

ABCD 中, E F 分别是 AD BC 上的点,将平行四边形 ABCD 沿 EF 所在直线翻折,使点 B 与点 D 重合,且点 A 落在点 A ' 处.

(1)求证:△ A ' ED ΔCFD

(2)连接 BE ,若 EBF = 60 ° EF = 3 ,求四边形 BFDE 的面积.

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 4 3 ) OA = 1 OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan OAD = 3 4

(1)求抛物线的解析式;

(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.

①在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.

②在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.

已知 Rt Δ ABC 中, ACB = 90 ° ,点 D E 分别在 BC AC 边上,连接 BE AD 交于点 P ,设 AC = kBD CD = kAE k 为常数,试探究 APE 的度数:

(1)如图1,若 k = 1 ,则 APE 的度数为  

(2)如图2,若 k = 3 ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出 APE 的度数.

(3)如图3,若 k = 3 ,且 D E 分别在 CB CA 的延长线上,(2)中的结论是否成立,请说明理由.

如图, P O 外的一点, PA PB O 的两条切线, A B 是切点, PO AB 于点 F ,延长 BO O 于点 C ,交 PA 的延长交于点 Q ,连接 AC

(1)求证: AC / / PO

(2)设 D PB 的中点, QD AB 于点 E ,若 O 的半径为3, CQ = 2 ,求 AE BE 的值.

已知关于 x 的一元二次方程 m x 2 + ( 1 5 m ) x 5 = 0 ( m 0 )

(1)求证:无论 m 为任何非零实数,此方程总有两个实数根;

(2)若抛物线 y = m x 2 + ( 1 5 m ) x 5 x 轴交于 A ( x 1 0 ) B ( x 2 0 ) 两点,且 | x 1 x 2 | = 6 ,求 m 的值;

(3)若 m > 0 ,点 P ( a , b ) Q ( a + n , b ) 在(2)中的抛物线上(点 P Q 不重合),求代数式 4 a 2 n 2 + 8 n 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号