本题共有3个小题,第1小题满分5分,第2小题满分6分,
第3小题满分7分.
对定义在区间上的函数
,若存在闭区间
和常数
,使得对任意的
都有
,且对任意的
都有
恒成立,则称函数
为区间
上的“U型”函数。
(1)求证:函数是
上的“U型”函数;
(2)设是(1)中的“U型”函数,若不等式
对一切的
恒成立,
求实数的取值范围;
(3)若函数是区间
上的“U型”函数,求实数
和
的值.
((本小题满分12分)
如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=.
(Ⅰ)求面ASD与面BSC所成二面角的大小;
(Ⅱ)设棱SA的中点为M,求异面直线DM与
SB所成角的大小;
(Ⅲ)求点D到平面SBC的距离.
((本小题满分12分)
已知椭圆的中心在坐标原点,焦点在
轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线过
且与椭圆相交于A,B两点,当P是AB的中点时,
求直线的方程.
(本小题满分12分)
设,求直线AD与平面
的夹
角。
已知命题若
是
的充分不必要条件,求
的取值范围
(本小题分)
设是数列
的前
项和,点
在直线
上.
(Ⅰ)求数列的通项公式;
(Ⅱ)记,数列
的前
项和为
,求使
的
的最小值;
(Ⅲ)设正数数列满足
,求数列
中的最大项.