(本题满分14分,其中第1小题6分,第2小题8分)
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度
(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求的值及
的表达式;
(2)隔热层修建多厚时,总费用达到最小,并求最小值.
(本小题满分12分) 已知;
若
是
的必要非充分条件,求实数
的取值范围.
(本小题满分13分)已知经过抛物线焦点
的直线
与抛物线
交于
、
两点,若存在一定点
,使得无论
怎样运动,总有直线
的斜率与
的斜率互为相反数.
(1)求与
的值;
(2)对于椭圆:
,经过它左焦点
的直线
与椭圆
交于
、
两点,是否存在定点
,使得无论
怎样运动,都有
?若存在,求出
坐标;若不存在,说明理由.
(本小题满分13分)如图,在正三棱柱中,已知
,
,
是
的中点,
在棱
上.
(1)求异面直线与
所成角;
(2)若平面
,求
长;
(3)在棱上是否存在点
,使得二面角
的大小等于
,若存在,求
的长;若不存在,说明理由.
(本小题满分13分)椭圆的左、右焦点分别是
,
,过
斜率为1的直线与椭圆
相交于
,
两点,且
,
,
成等差数列.
(1)请探求与
的关系;
(2)设点在线段
的垂直平分线上,求椭圆
的方程.
(本小题满分12分)如图所示,直三棱柱中,
,
,棱
,
分别是
、
的中点.
(1)求的长;
(2)求的值;
(3)求证:.