(本题满分18分,第1小题满分5分,第2小题满分5分,第3小题满分8分)
已知函数,其中
.
(1)当时,设
,
,求
的解析式及定义域;
(2)当,
时,求
的最小值;
(3)设,当
时,
对任意
恒成立,求
的取值范围.
(本小题满分10分)解下列的方程、方程组及不等式组:
(1);
(2)
(本小题14分)已知直线与椭圆
相交于A、B两点,
且线段AB的中点在直线上.
(1)求此椭圆的离心率;
(2)若椭圆的右焦点关于直线的对称点的在圆
上,求此椭圆的方程.
(本小题满分13分)
如图,在四棱锥中,底面
四边长为1的菱形,
,
,
,
为
的中点,
为
的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
(本小题满分12分)
命题p:实数x满足x2-4ax+3a2<0,其中a<0,命题q:实数x满足x2-x-6≤0,且q是p的必要不充分条件,求a的取值范围.
( 本小题满分12分)
在数列中,
,
.
(Ⅰ)设.证明:数列
是等差数列;
(Ⅱ)求数列的前
项和
.