本题共有2个小题,第1小题满分7分,
第2小题满分7分 .
在中,角
、
、
的对边分别为
、
、
,
已知,
, 且
.
(1).求角的大小;
(2). 若,
面积为
,试判断
的形状,并说明理由.
.(本小题满分l0分)选修4—5:不等式选讲
已知函数.(I)求不等式
≤6的解集;(Ⅱ)若关于
的不等式
>
恒成立,求实数
的取值范围。
(本小题满分10分)选修4—4:坐标系与参数方程
在平面直角坐标系中,以原点
为极点,
轴为极轴建立极坐标系,曲线C1的方程
为(
为参数),曲线C2的极坐标方程为:
,若曲线C1与
C2相交于A、B两点. (I)求|AB|的值;(Ⅱ)求点M(-1,2)到A、B两点的距离之积.
(本小题满分10分)选修4—1:几何证明选讲
如图,AB为圆的直径,P为圆
外一点,过P点作PC
AB于C,交圆
于D点,PA
交圆于E点,BE交PC于F点.(I)求证:
;(Ⅱ)求证:
(本小题满分l2分)已知函数
,
∈R.
(I)讨论函数的单调性;
(Ⅱ)当时,
≤
恒成立,求
的取值范围
(本小题满分12分)
点P为圆:
(
>0)
上一动点,PD
轴于D点,记线段PD的中点M的运
动轨迹为曲线C.(I)求曲线C的方程; (II)若动直线与曲线C交于A、B两点,当△OAB(O是坐标原点)面积取得最大值,且最大值为1时,求
的值.