(本小题满分12分)
如图,在四棱锥中,
平面
,底面
为直角梯形,
∥
,
,
(Ⅰ)求异面直线与
所成角的大小;
(Ⅱ)求证:⊥平面
;
(Ⅲ)求直线与平面
所成角大小的正切值.
在直角坐标系 中,曲线 的参数方程为 ( 为参数),直线 的参数方程为 ( 为参数).
(1)求 和 的直角坐标方程;
(2)若曲线 截直线 所得线段的中点坐标为 ,求 的斜率.
已知函数 .
(1)若 ,证明:当 时, ;
(2)若
在只有一个零点,求
的值.
如图,在三棱锥 中, , , 为 的中点.
(1)证明: 平面 ;
(2)若点 在棱 上,且二面角 为 ,求 与平面 所成角的正弦值.
设抛物线 的焦点为 ,过 且斜率为 的直线 与 交于 , 两点, .
(1)求 的方程;
(2)求过点 , 且与 的准线相切的圆的方程.
下图是某地区2000年至2016年环境基础设施投资额 (单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了 与时间变量 的两个线性回归模型.根据2000年至2016年的数据(时间变量 的值依次为 )建立模型①: ;根据2010年至2016年的数据(时间变量 的值依次为 )建立模型②: .
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.