(本小题满分13分)某种零件按质量标准分为五个等级.现从一批该零件中随机抽取
个,对其等级进行统计分析,得到频率分布表如下:
等级 |
![]() |
![]() |
![]() |
![]() |
![]() |
频率 |
![]() |
![]() |
![]() |
![]() |
![]() |
(Ⅰ)在抽取的个零件中,等级为
的恰有
个,求
;
(Ⅱ)在(Ⅰ)的条件下,从等级为和
的所有零件中,任意抽取
个,求抽取的
个零
件等级恰好相同的概率.
(本小题12分)设命题实数
满足
,其中
,命题
实数
满足
.
(Ⅰ)若,且
为真,求实数
的取值范围;
(Ⅱ)若是
的充分不必要条件,求实数
的取值范围.
已知椭圆的两个焦点F1(-,0),F2(
,0),且椭圆短轴的两个端点与F2构成正三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点(1,0)且与坐标轴不平行的直线l与椭圆交于不同两点P、Q,若在x轴上存在定点E(m,0),使·
恒为定值,求m的值.
已知命题p:方程在[-1,1]上有且仅有一解.命题q:对于任意实数x都不满足不等式
.若命题“p或q”是假命题,求a的取值范围.
如图,在直三棱柱中,
,
分别是
的中点,且
.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面⊥平面
.
某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A类产品50件,B类产品140件,求所需租赁费最少为多少元?