某中学举行了一次“数学基础知识竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为)进行统计.按照
,
,
,
,
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
,
的数据).
(1)求样本容量和频率分布直方图中的
、
的值;
(2)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生参加“市级数学基础知识竞赛”,求所抽取的2名学生中恰有一人得分在内的概率.
已知向量,
,若函数
.
(1)求时,函数
的值域;
(2)在中,
,
,
分别是角
,
,
的对边,若
且
,求
边上中线长的最大值.
设,圆
:
与
轴正半轴的交点为
,与曲线
的交点为
,直线
与
轴的交点为
.
(1)求证:;
(2)设,
,求证:
.
设函数
(1)当时,求
的最小值;
(2)对,
恒成立,求
的取值范围.
设椭圆:
,
,
分别是椭圆的左右焦点,过椭圆右焦点
的直线
与椭圆
交于
,
两点.
(1)是否存在直线,使得
,若存在,求出直线
的方程;若不存在,说明理由;
(2)若是椭圆
经过原点
的弦,且
,求证:
为定值.
如图,四棱锥中,侧面
是边长为2的正三角形,底面
是菱形,
,点
在底面
上的射影为
的重心,点
为线段
上的点.
(1)当点为
的中点时,求证:
平面
;
(2)当平面与平面
所成锐二面角的余弦值为
时,求
的值.