(本小题满分12分)已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e],f(x)=ax+lnx(其中e是自然对数的底数,a∈R)(1)求f(x)的解析式;(2)设g(x)=,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+;(3)是否存在实数a,使得当x∈[-e,0)时f(x)的最小值是3 如果存在,求出实数a的值;如果不存在,请说明理由.
已知抛物线C:,P为C上一点且纵坐标为2,Q,R是C上的两个动点,且. (1)求过点P,且与C恰有一个公共点的直线的方程; (2)求证:QR过定点.
已知椭圆过点离心率, (1)求椭圆方程; (2)若过点的直线与椭圆C交于A、B两点,且以AB为直径的圆过原点,试求直线的方程.
已知函数且,其中、 (1)求m的值; (2)求函数的单调增区间.
已知双曲线的焦点为,且离心率为2; (1)求双曲线的标准方程; (2)若经过点的直线交双曲线于两点,且为的中点,求直线的方程.
斜率为2的直线经过抛物线的焦点,且与抛物线相交于两点,求线段的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号