(本小题满分12分)
已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e],f(x)=ax+lnx(其中e是自然对数的底数,a∈R)
(1)求f(x)的解析式;
(2)设g(x)=,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+
;
(3)是否存在实数a,使得当x∈[-e,0)时f(x)的最小值是3 如果存在,求出实数a的值;如果不存在,请说明理由.
已知双曲线的中心在坐标原点,焦点在x轴上,渐近线方程为,且经过点
,设
是双曲线的两个焦点,点
在双曲线上,且
=64.
(1)求双曲线的方程;
(2)求.
已知抛物线以坐标轴为对称轴,原点为顶点,开口向上,且过圆的圆心.
(1)求此抛物线的方程;
(2)在(1)中所求抛物线上找一点,使这点到直线的距离最短,并求距离的最小值.
已知椭圆的标准方程为.
(1)求椭圆的长轴和短轴的大小;
(2)求椭圆的离心率;
(3)求以此椭圆的长轴端点为短轴端点,并且经过点P(-4,1)的椭圆方程.
已知两圆,
求(1)它们的公共弦所在直线的方程;(2)公共弦长.
.(本题满分13分)设函数,方程f(x)=x有唯一的解,
已知f(xn)=xn+1(n∈N﹡)且f(xl)=.
(1)求证:数列{)是等差数列;
(2)若,求Sn=b1+b2+b3+…+bn
(3)在(2)的条件下,是否存在最小正整数m,使得对任意n∈N﹡,有成立,若存在,求出m的值;若不存在,请说明理由。