.如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(1)求证:AB1// 面BDC1;
(2)求二面角C1—BD—C的余弦值;
(3)在侧棱AA1上是否存在点P,使得CP⊥面BDC1?并证明你的结论.
已知为数列
的前n项和,且
,
.
(1)求数列的通项公式;
(2)设,求数列
的前n项和
.
,
,
.
(1)比较与
的大小;
(2)解关于x的不等式:.
椭圆(
)的上顶点为
,
是
上的一点,以
为直径的圆经过椭圆
的右焦点
.
(1)求椭圆的方程;
(2)动直线与椭圆
有且只有一个公共点,问:在
轴上是否存在两个定点,它们到直线
的距离之积等于
?如果存在,求出这两个定点的坐标;如果不存在,说明理由.
已知函数在
是增函数,
在
为减函数.
(1)求,
的表达式;
(2)求证:当时,方程
有唯一解;
(3)当时,若
在
内恒成立,求
的取值范围.
某百货超市欲在春节期间对某新上市商品开展促销活动,经测算该商品的销售量万件与促销费用
万元满足
.已知
万件该商品的进价成本为
万元,商品的销售价格定为
元/件.
(1)将该商品的利润万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,商家的利润最大?最大利润为多少?