游客
题文

.(本小题满分12分)
设椭圆)经过点,其离心率与双曲线的离心率互为倒数.
(Ⅰ)求椭圆的方程;(注意椭圆的焦点在轴上哦!)
(Ⅱ) 动直线交椭圆两点,求面积的最大值.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (mm0),点P的轨迹加上MN两点构成曲线C.
求曲线C的方程并讨论曲线C的形状;
(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点ABAB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;
(3) 在(2)的条件下,设,且,求y轴上的截距的变化范围.

已知函数.
若函数处取得极值,试求的值;
在(1)的条件下,当时,恒成立,求c的取值范围.

已知命题p;命题q:函数有意义.
(1) 若为真命题,求实数x的取值范围;
(2) 若为真命题,求实数x的取值范围.

已知函数
(1)要使在区间(0,1)上单调递增,试求a的取值范围;
(2)若时,图象上任意一点处的切线的倾斜角为,试求当时,a的取值范围.

已知直线lykx+2(k为常数)过椭圆=1(ab>0)的上顶点B和左焦点F,直线l被圆x2y2=4截得的弦长为d.
(1)若d=2,求k的值;
(2)若d,求椭圆离心率e的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号