游客
题文

.(12分)如图,在四棱台ABCDA1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCDDD1=2.
(1)求证:B1B∥平面D1AC
(2)求证:平面D1AC⊥平面B1BDD1.

科目 数学   题型 解答题   难度 中等
知识点: 立体图形的结构特征
登录免费查看答案和解析
相关试题

(本题满分12分)
已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.

如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)证明:PQ⊥平面DCQ;
(2)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

今年十一黄金周,记者通过随机询问某景区110名游客对景区的服务是否满意,得到如下的列联表:
性别与对景区的服务是否满意  单位:名




总计
满意
50
30
80
不满意
10
20
30
总计
60
50
110

(1)从这50名女游客中按对景区的服务是否满意采取分层抽样,抽取一个容量为5的样本,问样本中满意与不满意的女游客各有多少名?
(2)从(1)中的5名女游客样本中随机选取两名作深度访谈,求选到满意与不满意的女游客各一名的概率;
(3)根据以上列联表,问有多大把握认为“游客性别与对景区的服务满意”有关
注:
临界值表:

P()
0.05
0.025
0.010
0.005

3.841
5.024
6.635
7.879

在△中,角的对边分别为,已知,且
求: (1)(2)△的面积.

(本小题满分14分)
已知函数
(Ⅰ) 求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数g(x)=x3 +x2在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个
使得成立,试求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号