(本题13分)(08年宁夏回族自治区)为极大地满足人民生活的需求,丰富市场供应,我区农村温棚设施农业迅速发展,温棚种植面积在不断扩大.在耕地上培成一行一行的矩形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种。科学研究表明:在塑料温棚中分垄间隔套种高、矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加它们的光合作用,提高单位面积的产量和经济效益。
现有一个种植总面积为540m2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:
|
占地面积(m![]() |
产量(千克/垄) |
利润(元/千克) |
西红柿 |
30 |
160 |
1.1 |
草莓 |
15 |
50 |
1.6 |
(1)若设草莓共种植了
垄,通过计算说明共有几种种植方案?分别是哪几种?
(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?
(满分l0分)如图,△ABC是等边三角形,点D是AC的中点,延长BC到点E,使CE=CD.
(1)用尺规作图的方法,过点D作DM⊥BE,垂足为M(不写作法,保留作图痕迹);
(2)求证:BM=EM.
(每小题8分,共16分)
(1)计算:︱-2︱+2sin30°-(-)2+(tan45°)-1;
(2)先化简,再求值:,其中a=tan60°-l.
(每小题7分,共14分)
(1)解方程:x2—6x+1=0;
(2)解方程:=
.
(满分l6分)如图5—9,已知点O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0)。
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A,B,O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O,B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由。
(满分l4分)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为点H.
(1)求证:AH·AB=AC2;
(2)若过点A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE·AF=AC2;
(3)若过点A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP·AQ=AC2是否成立(不必证明).