游客
题文

椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点. (Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得关于直线对称,若存在,求出点的坐标,若不存在,说明理由.

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;(Ⅱ)设,的最大值是5,求k的值.

(本小题满分12分)已知函数,其中为常数.
(1)当时,恒成立,求的取值范围;(2)求的单调区间.

(本小题满分12分)椭圆的中心为坐标原点,焦点在轴上,焦点到相应准线的距离以及离心率均为,直线轴交于点,与椭圆交于相异两点,且.(1)求椭圆方程;(2)若,求的取值范围.

(本小题满分12分)在数列
(1)(2)设
(3)求数列

(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为
(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号