椭圆的一个焦点
与抛物线
的焦点重合,且截抛物线的准线所得弦长为
,倾斜角为
的直线
过点
. (Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为,问抛物线
上是否存在一点
,使得
与
关于直线
对称,若存在,求出点
的坐标,若不存在,说明理由.
在△ABC中,角A、B、C的对边分别为a、b、c,且满足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;(Ⅱ)设,
的最大值是5,求k的值.
(本小题满分12分)已知函数,其中
为常数.
(1)当时,
恒成立,求
的取值范围;(2)求
的单调区间.
(本小题满分12分)椭圆的中心为坐标原点
,焦点在
轴上,焦点到相应准线的距离以及离心率均为
,直线
与
轴交于点
,与椭圆
交于相异两点
、
,且
.(1)求椭圆方程;(2)若
,求
的取值范围.
(本小题满分12分)在数列
(1)(2)设
(3)求数列
(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为,
,
,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为
,
,
.
(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量
的期望.