(本小题满分1 3分)如图,在△ABC中,已知B=,AC=4
,D为BC边上一点.
(I)若AD=2,S△ABC=2,求DC的长;
(Ⅱ)若AB=AD,试求△ADC的周长的最大值.
设函数(
,
)。
⑴若,求
在
上的最大值和最小值;
⑵若对任意,都有
,求
的取值范围;
⑶若在
上的最大值为
,求
的值。
如图,圆O与离心率为的椭圆T:
(
)相切于点M
。
⑴求椭圆T与圆O的方程;
⑵过点M引两条互相垂直的两直线、
与两曲线分别交于点A、C与点B、D(均不重合)。
①若P为椭圆上任一点,记点P到两直线的距离分别为、
,求
的最大值;
②若,求
与
的方程。
如图,在海岸线一侧C处有一个美丽的小岛,某旅游公司为方便游客,在上设立了A、B两个报名点,满足A、B、C中任意两点间的距离为10千米。公司拟按以下思路运作:先将A、B两处游客分别乘车集中到AB之间的中转点D处(点D异于A、B两点),然后乘同一艘游轮前往C岛。据统计,每批游客A处需发车2辆,B处需发车4辆,每辆汽车每千米耗费2元,游轮每千米耗费12元。设∠,每批游客从各自报名点到C岛所需运输成本S元。
⑴写出S关于的函数表达式,并指出
的取值范围;
⑵问中转点D距离A处多远时,S最小?
如图的几何体中,平面
,
平面
,△
为等边三角形,
,
为
的中点.
(1)求证:平面
;
(2)求证:平面平面
.
在三角形ABC中,已知,设∠CAB=α,
(1)求角α的值;
(2)若,其中
,求
的值.