已知:双曲线的左、右两个焦点分别为
、
,动点
满足
。
()求:动点
的轨迹
的方程;
()若
、
分别为(1)中曲线
的左、右焦点,
是曲线
上的一个动点,
求:的最大值和最小值。
如图,⊙的半径为6,线段
与⊙
相交于点
、
,
,
,
与⊙
相交于点
.
(1)求长;
(2)当⊥
时,求证:
.
设函数,其中
.
(Ⅰ)当时,求曲线
在原点处的切线方程;
(Ⅱ)试讨论函数极值点的个数;
(Ⅲ)求证:对任意的,不等式
恒成立.
已知椭圆:
的离心率为
,右顶点
是抛物线
的焦点.直线
:
与椭圆
相交于
,
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)如果,点
关于直线
的对称点
在
轴上,求
的值.
在如图所示的几何体中,四边形ABCD为矩形,平面ABEF平面ABCD,EF//AB,
,AD=2,AB= AF=2EF=l,点P在棱DF上.
(1)若P为DF的中点,求证:BF//平面ACP
(2)若二面角D-AP-C的余弦值为,求PF的长度.
以下茎叶图记录了甲、乙两名射击运动员训练的成绩(环数),射击次数为4次.
(1)试比较甲、乙两名运动员射击水平的稳定性;
(2)每次都从甲、乙两组数据中随机各选取一个进行比对分析,共选取了4次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求
的分布列及数学期望.