游客
题文

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.图是甲流水线样本的频率分布直方图,表是乙流水线样本频数分布表.

(Ⅰ) 若以频率作为概率,试估计从甲流水线上任取件产品,求其中合格品的件数的数学期望;
(Ⅱ)从乙流水线样本的不合格品中任意取件,求其中超过合格品重量的件数的分布列;
(Ⅲ)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关” .

 
甲流水线
乙流水线
 合计
合格品


 
不合格品


 
合 计
 
 


0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828

附:下面的临界值表供参考:
(参考公式:,其中)

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

已知各项均不相等的等差数列的前三项和为18,是一个与无关的常数,若恰为等比数列的前三项,(1)求的通项公式.(2)记数列的前三项和为,求证:

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求CD与面ABC所成的角正弦值的大小;
(2) 对于AD上任意点H,CH是否与面ABD垂直。

每一个父母都希望自己的孩子能升上比较理想的中学,于是就催生了“择校热”,这样“择校”的结果就导致了学生在路上耽误的时间增加了.若某生由于种种原因,每天只能6:15骑车从家出发到学校,途经5个路口,这5个路口将家到学校分成了6个路段,每个路段的骑车时间是10分钟(通过路口的时间忽略不计),假定他在每个路口遇见红灯的概率均为,且该生只在遇到红灯或到达学校才停车.对每个路口遇见红灯的情况统计如下:

红灯
1
2
3
4
5
等待时间(秒)
60
60
90
30
90

(1)设学校规定7:20后(含7:20)到校即为迟到,求这名学生迟到的概率;
(2)设表示该学生第一次停车时已经通过的路口数,求它的分布列与期望.

已知设函数(Ⅰ)当,求函数的值域;
(Ⅱ)当时,若="8," 求函数的值;

已知正项数列中,,点在抛物线上;数列中,点在过点(0, 1),以为斜率的直线上。
(1)求数列的通项公式;
(2)若, 问是否存在,使成立,若存在,求出值;若不存在,说明理由;
(3)对任意正整数,不等式恒成立,求正数的取值范围。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号