已知正项数列中,
,点
在抛物线
上;数列
中,点
在过点(0, 1),以
为斜率的直线上。
(1)求数列的通项公式;
(2)若 , 问是否存在
,使
成立,若存在,求出
值;若不存在,说明理由;
(3)对任意正整数,不等式
恒成立,求正数
的取值范围。
已知函数,函数
.
(1)当时,函数
的图象与函数
的图象有公共点,求实数
的最大值;
(2)当时,试判断函数
的图象与函数
的图象的公共点的个数;
(3)函数的图象能否恒在函数
的图象的上方?若能,求出
的取值范围;若不能,请说明理由.
如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,
时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.
(1)试确定A,和
的值;
(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用
来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)
已知函数,(其中
、
为参数)
(1)当时,证明:
不是奇函数;
(2)如果是奇函数,求实数
、
的值;
(3)已知,在(2)的条件下,求不等式
的解集.
已知函数的最小正周期为
.
(1)求函数的对称轴方程;
(2)设,
,求
的值.
设集合,集合
,集合C为不等式
的解集.
(1)求;
(2)若,求a的取值范围.