如图,在四棱锥中,底面是菱形,,,,平面,是的中点,是的中点. (Ⅰ) 求证:∥平面;(Ⅱ)求证:平面⊥平面;(Ⅲ)求平面与平面所成的锐二面角的大小.
设全集U=R,集合A={x︱︱x-5︱5},B={x︱x2+x2},求A(uB).
在抛物线y=x2上求一点,使它到直线x-y-2=0的距离最短,并求此距离.
原点为顶点,坐标轴为对称轴,且焦点在直线x-2y-4=0上的抛物线方程为.
抛物线的顶点在原点,焦点是圆x2+y2-4x=0的圆心,斜率为2的直线l过焦点,且与抛物线、圆依次交于点A、B、C、D,则|AB|+|CD|的值等于______________.
已知△AOB的一个顶点为抛物线y2=2x的顶点O,A、B两点都在抛物线上,且∠AOB=90°. (1)证明直线AB必过一定点; (2)求△AOB面积的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号