已知点是离心率为的椭圆C:上的一点。斜率为直线BD交椭圆C于B、D两点,且A、B、D三点不重合。(Ⅰ)求椭圆C的方程;(Ⅱ)面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
设 (Ⅰ)的图象关于原点对称,当时,的极小值为,求的解析式。 (Ⅱ)若,是上的单调函数,求的取值范围
已知数列 的前项和是且 (Ⅰ)求数列的通项公式; (Ⅱ)记,求数列的前项的和.
已知函数的定义域为. ⑴求的取值范围; ⑵当取最大值时,解关于的不等式.
已知在平面直角坐标系中,圆的参数方程为(为参数),以为极轴建立极坐标系,直线的极坐标方程为. ⑴写出直线的直角坐标方程和圆的普通方程; ⑵求圆截直线所得的弦长.
如图所示,自⊙外一点引切线与⊙切于点,为的中点,过引割线交⊙于两点. 求证:
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号