已知,且
.
(1)试利用基本不等式求的最小值
;
(2)若实数满足
,求证:
.
在直角坐标平面内,以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
,直线
的参数方程为
(
为参数).
(1)分别求出曲线和直线
的直角坐标方程;
(2)若点在曲线
上,且
到直线
的距离为1,求满足这样条件的点
的个数.
在直角坐标平面内,将每个点绕原点按逆时针方向旋转的变换
所对应的矩阵为
,将每个点横、纵坐标分别变为原来的
倍的变换
所对应的矩阵为
.
(1)求矩阵的逆矩阵
;
(2)求曲线先在变换
作用下,然后在变换
作用下得到的曲线方程.
设(
是自然对数的底数,
),且
.
(1)求实数的值,并求函数
的单调区间;
(2)设,对任意
,恒有
成立.求实数
的取值范围;
(3)若正实数满足
,
,试证明:
;并进一步判断:当正实数
满足
,且
是互不相等的实数时,不等式
是否仍然成立.
如图所示,在边长为的正方形
中,点
在线段
上,且
,
,作
//
,分别交
,
于点
,
,作
//
,分别交
,
于点
,
,将该正方形沿
,
折叠,使得
与
重合,构成如图所示的三棱柱
.
(1)求证:平面
;
(2)若点E为四边形BCQP内一动点,且二面角E-AP-Q的余弦值为,求|BE|的最小值.