已知,
.
(Ⅰ),求函数
在区间
上的最大值与最小值;
(Ⅱ)若函数在区间
和
上都是增函数,求实数
的取值范围.
(本小题满分14分) 已知椭圆的中心在原点,一个焦点
,且长轴长与短轴长的比是
.若椭圆
在第一象限的一点
的横坐标为
,过点
作倾斜角互补的两条不同的直线
,
分别交椭圆
于另外两点
,
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:直线的斜率为定值;
(Ⅲ)求面积的最大值.
(本小题满分14分)
已知四棱锥的底面
为菱形,且
,
,
与
相交于点
.
(Ⅰ)求证:底面
;
(Ⅱ)求直线与平面
所成角的正弦值;
(Ⅲ)若是
上的一点,且
,求
的值.
(本小题满分13分)
对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(Ⅰ)求出表中及图中
的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
分组 |
频数 |
频率 |
![]() |
10 |
0.25 |
![]() |
24 |
![]() |
![]() |
![]() |
![]() |
![]() |
2 |
0.05 |
合计 |
![]() |
1 |
(本小题满分13分)在直角坐标系中,点P到两点
,
的距离之和等于4,设点P的轨迹为
,直线
与C交于A,B两点.(1)写出C的方程;(2)若
,求k的值.
(对于给定数列,如果存在实常数
,使得
对于任意
都成立,我们称数列
是 “M类数列”.
(I)若,
,
,数列
、
是否为“M类数列”?若是,指出它对应的实常数
,若不是,请说明理由;
(II)若数列满足
,
.
(1)求数列前
项的和.(2)已知数列
是 “M类数列”,求
.