为了估计某校的某次数学期末考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在上.将这些成绩分成六段
,
,…,
后得到如下部分频率分布直方图.
(Ⅰ)求抽出的60名学生中分数在内的人数;
(Ⅱ)若规定成绩不小于85分为优秀,则根据频 率分布直方图,估计该校的优秀人数.
(本题满分14分)
已知数列中,
.
(1)写出的值(只写结果)并求出数列
的通项公式;
(2)设,若对任意的正整数
,当
时,不等式
恒成立,求实数
的取值范围。
(本题满分14分)
已知点是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点的轨迹方程;
(2)已知点,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
(本题满分13分)
如图,在六面体中,平面
∥平面
,
⊥平面,
,
,
∥
.且
,
.
(1)求证: ∥平面
;
(2)求二面角的余弦值;
(3) 求五面体的体积.
(本题满分13分)
已知三次函数的导函数
,
,
、
为实数。
(1)若曲线在点(
,
)处切线的斜率为12,求
的值;
(2)若在区间[-1,1]上的最小值、最大值分别为-2、1,且
,求函数
的解析式。
(本题满分13分)
某学校数学兴趣小组有10名学生,其中有4名女同学;英语兴趣小组有5名学生,其中有3名女学生,现采用分层抽样方法(层内采用不放回简单随机抽样)从数学兴趣小组、英语兴趣小组中共抽取3名学生参加科技节活动。
(1)求从数学兴趣小组、英语兴趣小组各抽取的人数;
(2)求从数学兴趣小组抽取的学生中恰有1名女学生的概率;
(3)记表示抽取的3名学生中男学生数,求
的分布列及数学期望。