为了估计某校的某次数学期末考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在上.将这些成绩分成六段,,…,后得到如下部分频率分布直方图.(Ⅰ)求抽出的60名学生中分数在内的人数;(Ⅱ)若规定成绩不小于85分为优秀,则根据频 率分布直方图,估计该校的优秀人数.
已知函数,讨论的单调性.
已知曲线 在点 处的切线 平行直线,且点在第三象限. (1)求的坐标; (2)若直线 , 且 也过切点,求直线的方程.
若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数). (1)求的极值; (2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
已知函数. (1)求函数的单调递减区间; (2)若,证明:.
已知为实数, (1)求导数; (2)若,求在[-2,2] 上的最大值和最小值; (3)若在和上都是递增的,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号