为了估计某校的某次数学期末考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在上.将这些成绩分成六段
,
,…,
后得到如下部分频率分布直方图.
(Ⅰ)求抽出的60名学生中分数在内的人数;
(Ⅱ)若规定成绩不小于85分为优秀,则根据频 率分布直方图,估计该校的优秀人数.
(本小题满分12分)从一批草莓中,随机抽取个,其重量(单位:克)的频率分布表如下:
分组(重量) |
![]() |
![]() |
![]() |
![]() |
频数(个) |
![]() |
![]() |
![]() |
![]() |
已知从个草莓中随机抽取一个,抽到重量在
的草莓的概率为
.
(1)求出,
的值;
(2)用分层抽样的方法从重量在和
的草莓中共抽取
个,再从这
个草莓中任取
个,
求重量在和
中各有
个的概率.
【原创】(本小题满分12分)已知函数(
,
),
的最大值是
,其图象经过点
.
(1)求函数的解析式;
(2)若,求
的值.
(本小题满分14分)已知函数在
处的切线
与直线
垂直,
函数.
(1)求实数的值;
(2)若函数存在单调递减区间,求实数
的取值范围;
(3)设,
(
)是函数
的两个极值点,若
,求
的最小值.
(本小题满分14分)已知椭圆(
)的右焦点
,点
在椭圆上.
(1)求椭圆的标准方程;
(2)直线过点
,且与椭圆
交于
,
两点,过原点
作直线
的垂线,垂足为
,如果
的
面积为(
为实数),求
的值.
【改编】(本小题满分14分)已知数列的前
项和是
,且
,
,
成等差数列.
(1)求数列的通项公式;
(2)设(
),求适合方程
的正整数
的值.