将一枚质地均匀的骰子连掷两次,记向上的点数分别为.
(Ⅰ)求事件“”的概率;
(Ⅱ)求事件“方程有实根”的概率.
直线与抛物线
(
p
0)交于A、B两点,且
(O为坐标原点),求证:
(1)A、B两点的横坐标之积,纵坐标之积都是常数;(2)直线AB经过x轴上一个定点.
某单位建造一间地面面积为12的背面靠墙的矩形小屋,房屋正面的造价为12
00元/
,房屋侧面造价为800元/
,屋顶
的总造价为5800元,如果墙面高为3m,且不计房屋背面费用,问怎样设计房屋能使得总造价最低,最低造价为多少元?
12分)已知,
,求
的范围。
一条光线从A(-2,3)射出,经直线x轴反射后,经过点B(4,5),求入射光线与反射光线所在直线方程。
(本小题满分14分)
已知函数.
(1)当时,求函数
的单调递增区间;
(2)是否存在,使得对任意的
,
都有
,若存在,求
的范围;若不存在,请说明理由.