游客
题文

(本小题满分12分)某公司为了实现2011年1000万元利润的目标,准备制定一个激励销售人员的奖励方案:销售利润达到10万元时,按销售利润进行奖励,且奖金数额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金数额不超过5万元,同时奖金数额不超过利润昀25%,现有三个奖励模型:,问其中是否有模型能完全符合公司的要求?说明理由.
(参考数据:

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

已知抛物线C:y2=2px(p>0)过点A(1,-2).
(Ⅰ)求抛物线C的方程,并求其准线方程;
(Ⅱ)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.

已知平面区域被圆C及其内部所覆盖.
(Ⅰ)当圆C的面积最小时,求圆C的方程;
(Ⅱ)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.

已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,直线l1过点,并且直线l1与直线l2垂直.求满足条件的a,b的值.

(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分.)
已知数列{}满足:为数列的前项和。
(1)若{}是递增数列,且成等差数列,求的值;
(2)若,且{}是递增数列,{}是递减数列,求数列{}的通项公式;
(3)若,对于给定的正整数,是否存在一个满足条件的数列,使得,如果存在,给出一个满足条件的数列,如果不存在,请说明理由。

(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分.)
已知椭圆的左、右焦点分别为,点是椭圆的一个顶点,△是等腰直角三角形.
(1)求椭圆的方程;
(2)设点是椭圆上一动点,求线段的中点的轨迹方程;
(3)过点分别作直线交椭圆于两点,设两直线的斜率分别为
,探究:直线是否过定点,并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号