直四棱柱中,底面
是等腰梯形,
,
,
为
的中点,
为
中点.
(1) 求证:;
(2) 若,求
与平面
所成角的正弦值.
已知函数,
.(其中
为自然对数的底数).
(1)设曲线在
处的切线与直线
垂直,求
的值;
(2)若对于任意实数≥0,
恒成立,试确定实数
的取值范围;
(3)当时,是否存在实数
,使曲线C:
在点
处的切线与
轴垂直?若存在,求出
的值;若不存在,请说明理由.
某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交元(1≤a≤3)的管理费,预计当每件商品的售价为
元(8≤x≤9)时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最
大值M(a).
函数的最小值是
,在一个周期内图象最高点与最低点横坐标差是
,又:图象过点
,
求(1)函数解析式,
(2)函数的最大值、以及达到最大值时的集合;
(3)该函数图象可由的图象经过怎样的平移和伸缩得到?
(4)当时,函数的值域.
设有关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2) 若是从区间[0,3] 任 取 的一个数,
是从区间[0,2]任取的一个数,求上述方程有实根的概率.
设曲线在点
处的切线斜率为
,且
,对一切实数
,不等式
恒成立
.
(1) 求的值;
(2) 求函数的表达式;
(3) 求证:.