如图直角梯形OABC中,,SO=1,以OC、OA、OS分别为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求的余弦值;
(Ⅱ)设
①
②设OA与平面SBC所成的角为,求
。
(本小题满分12分) 已知点,直线
及圆
.
(1)求过点的圆的切线方程;
(2)若直线与圆相切,求
的值;
(3)若直线与圆相交于
两点,且弦
的长为
,求
的值.
(本小题满分12分) 已知圆过两点
,且圆心
在
上.
(1)求圆的方程;
(2)设是直线
上的动点,
是圆
的两条切线,
为切点,求四边形
面积的最小值.
(本小题满分12分)已知两点,直线
,在直线
上求一点
.
(1)使最小;(2)使
最大.
(本小题满10分)设直线的方程为
.
(1) 若在两坐标轴上的截距相等,求
的方程;
(2) 若不经过第二象限,求实数
的取值范围.
如图:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.