如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4."
(1) 当E是棱CC1中点时, 求证: CF∥平面AEB1;
(2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的长, 若不存在,
请说明理由.
已知ABC中,角A,B,C的对边分别为a,b,c, 若向量
与向量
共线.
(1)求角C的大小;
(2)若,求a,b的值.
已知为函数
图象上一点,O为坐标原点,记直线
的斜率
.
(Ⅰ)若函数在区间
上存在极值,求实数m的取值范围;
(Ⅱ)设,若对任意
恒有
,求实数
的取值范围.
在平面直角坐标系中,已知
分别是椭圆
的左、右焦点,椭圆
与抛物线
有一个公共的焦点,且过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆
相交于
、
两点,若
(
为坐标原点),试判断直线
与圆
的位置关系,并证明你的结论.
如图,在底面为平行四边形的四棱柱中,
底面
,
,
,
.
(Ⅰ)求证:平面平面
;
(Ⅱ)若,求四棱锥
的体积.
设各项均为正数的数列的前
项和为
,满足
且
恰好是等比数列
的前三项.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)记数列的前
项和为
,若对任意的
,
恒成立,求实数
的取值范围.