如图, 三棱柱ABC—A1B1C1的侧棱AA1⊥底面ABC, ∠ACB =" 90°," E是棱CC1上动点, F是AB中点, AC =" 1," BC =" 2," AA1 =" 4."
(1) 当E是棱CC1中点时, 求证: CF∥平面AEB1;
(2) 在棱CC1上是否存在点E, 使得二面角A—EB1—B
的余弦值是, 若存在, 求CE的长, 若不存在,
请说明理由.
某校高三年级共有300人参加数学期中考试,从中随机抽取4名男生和4名女生的试卷,获得某一道题的样本,该题得分的茎叶图如图。
(Ⅰ)求样本的平均数;
(Ⅱ)设该题得分大于样本的平均数为合格,根据样本数据估计该校高三年级有多少名同学此题成绩合格;
(Ⅲ)在这4名男生和4名女生中,分别随机抽取一人,求该题女生得分不低于男生得分的概率.
已知数列为等差数列,
且
.
(Ⅰ)求数列的通项;
(Ⅱ)设,求数列
的前
项和
.
已知,
.
(Ⅰ)求的值;
(Ⅱ)求函数的增区间.
已知,函数
的零点从小到大依次为
,
.
(Ⅰ)若(
),试写出所有的
值;
(Ⅱ)若,
,
,求证:
;
(Ⅲ)若,
,
,试把数列
的前
项及
按从小到大的顺序排列。(只要求写出结果).
已知椭圆的离心率为
,右焦点为
,过原点
的直线
交椭圆于
两点,线段
的垂直平分线交椭圆
于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求证:为定值,并求
面积的最小值.