我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2011年5万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?
(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2009年初的1500万亩增加到2011年初的1815万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为400万计算:在从2011年初到2012年初这一年度内,我市新增加的森林面积与因回收废纸所能保护的森林面积之和最多可能达到多少亩.
在平面直角坐标系xOy中,二次函数的图象过A(-1,-2)、B(1,0)两点.
(1)求此二次函数的解析式;
(2)点是x轴上的一个动点,过点P作x轴的垂线交直线AB于点M,交二次函数的图象于点N.当点M位于点N的上方时,直接写出t的取值范围.
如图,在△ABC中,点O在AB上,以O为圆心的圆经过A,C两点,交AB于点D,已知2∠A +∠B =.
(1)求证:BC是⊙O的切线;
(2)若OA=6,BC=8,求BD的长.
如图,在△ABD和△AEC中,E为AD上一点,若∠DAC =∠B,∠AEC =∠BDA. 求证:.
已知:梯形ABCD中,AD∥BC,∠ABC=90°,BE⊥CD于点E.DP⊥CB于点P,连接AP、PE.如图1,若∠C=45°,求证:AP= AE.
如图2,若∠C=60°,直接写出线段AP、AE的数量关系.
在(1)的条件下,将线段EA绕点E顺时针旋转得到线段EA′,使∠DEA′=∠DAE,直线EA′分别与线段BA延长线、线段BC交于点N、点K,已知AD=1,EK=.求线段NE的长.
如图,平面直角坐标系中,点A(4,0),直线AB与y轴交于点B,S△AOB=6,点P从点A出发,以每秒1个单位的速度沿x轴正方向运动.
求B点坐标。
过点B作射线L∥x轴,动点Q从B出发,以每秒2个单位的速度,沿射线L运动.若动点P、Q同时运动,过点A作AC⊥AB,射线AC与射线PQ、射线L分别交于点C、K.设运动时间为t秒,线段KQ的长为y个单位.求y与t的函数关系式,并直接写出自变量t的取值范围.
在(2)的条件下,若D为BC中点.在点P、Q运动过程中是否存在t值, 以A、C、D、Q为顶点的四边形是平行四边形,若存在,求出t值;若不存在,请说明理由.