设分别是椭圆
的左右焦点,过左焦点
作直线
与椭圆交于不同的两点
、
.
(Ⅰ)若,求
的长;
(Ⅱ)在轴上是否存在一点
,使得
为常数?若存在,求出
点的坐标;若不存在,说明理由
在△ABC中,角A、B、C的对边分别为a、b、c,满足(c-2a)cosB+bcosC=0
(1)求角B的大小;
(2)若a=2,cosA=,求c的值
(本题16分)已知方程x2+y2-2x-4y+m=0.
(1)若此方程表示圆,求的取值范围;
(2)若(1)中的圆与直线x+2y-4=0相交于M,N两点,且OMON(O为坐标原点)求m的值;
(3)在(2)的条件下,求以MN为直径的圆的方程.
如图,互相垂直的两条公路、
旁有一矩形花园
,现欲将其扩建成一个更大的三角形花园
,要求
在射线
上,
在射线
上,且
过点
,其中
米,
米. 记三角形花园
的面积为S.
(Ⅰ)当的长度是多少时,S最小?并求S的最小值.
(Ⅱ)要使S不小于平方米,则
的长应在什么范围内?
(本大题14分)如图,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求证:B1D1∥面EFG
(2)求证:平面AA1C⊥面EFG.
(本题16分)已知{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn= an3n,求{bn}的前n项的和Tn.