游客
题文

(已知抛物线,过定点的直线交抛物线于A、B两点.
(Ⅰ)分别过A、B作抛物线的两条切线,A、B为切点,求证:这两条切线的交点在定直线上.
(Ⅱ)当时,在抛物线上存在不同的两点P、Q关于直线对称,弦长|PQ|中是否存在最大值?若存在,求其最大值(用表示),若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知椭圆的中心在原点,焦点在轴上,长轴长为,且点在椭圆上.
(1)求椭圆的方程;
(2)设是椭圆长轴上的一个动点,过作方向向量的直线交椭圆两点,求证:为定值.

,函数
(1)求函数的最小正周期和单调递增区间;
(2)若,求的值.

如图,正三棱锥的底面边长为,侧棱长为为棱的中点.

(1)求异面直线所成角的大小(结果用反三角函数值表示);
(2)求该三棱锥的体积

数列的首项为),前项和为,且).设).
(1)求数列的通项公式;
(2)当时,若对任意恒成立,求的取值范围;
(3)当时,试求三个正数的一组值,使得为等比数列,且成等差数列.

已知函数为实常数).
(1)若函数图像上动点到定点的距离的最小值为,求实数的值;
(2)若函数在区间上是增函数,试用函数单调性的定义求实数的取值范围;
(3)设,若不等式有解,求的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号