已知椭圆的中心在原点,焦点在
轴上,长轴长为
,且点
在椭圆
上.
(1)求椭圆的方程;
(2)设是椭圆
长轴上的一个动点,过
作方向向量
的直线
交椭圆
于
、
两点,求证:
为定值.
(本小题满分12分)已知:函数对一切实数
都有
成立,且
.
(1)求的值;
(2)求的解析式;
(3)已知,设
:当
时,不等式
恒成立;
:当
时,
是单调函数.如果满足
成立的
的集合记为
,满足
成立的
的集合记为
,求
(
为全集).
(本小题满分12分)某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.
为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求的概率;
(3)若a=1,记乙型号电视机销售量的方差为,根据茎叶图推断b为何值时,
达到最小值.(只需写出结论)
(本小题满分12分)数列{}的前
项和为
,
是
和
的等差中项,等差数列{
}满足
,
.
(1)求数列,
的通项公式;
(2)若,求数列
的前
项和
.
(本小题满分12分)在中,角
的对边分别为
,且满足
(1)求角的大小;
(2)若,求
面积的最大值。
(本小题满分12分)已知函数
(1)求的解析式并判断
的奇偶性;
(2)解关于的不等式