(在某次测验中,有6位同学的平均成绩为75分.用表示编号为
的同学所得成绩,且前5位同学的成绩如下:
编号n |
1 |
2 |
3 |
4 |
5 |
成绩![]() |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学成绩,及这6位同学成绩的标准差
;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间中的概率.
资金 |
每台空调或冰箱所需资金(百元) |
月资金供应数量 (百元) |
|
空调 |
冰箱 |
||
成本 |
30 |
20 |
300 |
工人工资 |
5 |
10 |
110 |
每台利润 |
6 |
8 |
问:该商场怎样确定空调或冰箱的月供应量,才能使总利润最大?最大利润是多少?
在等差数列{an}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{an}的首项,公差及前n项和.
(2)是否存在m使得不等式2x-1>m(x2-1)对满足|x|≤2的一切实数x的取值都成立.
为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.
①总体中的某一个体在第一次抽取时被抽到的概率是多少?
②个体在第1次未被抽到,而第2次被抽到的概率是多少?
③在整个抽样过程中,个体被抽到的概率是多少?