游客
题文

已知点P是直角坐标平面内的动点,点P到直线的距离为d1,到点F(– 1,0)的距离为d2,且
(1)   求动点P所在曲线C的方程;
(2)   直线过点F且与曲线C交于不同两点AB(点AB不在x轴上),分别过AB点作直线的垂线,对应的垂足分别为,试判断点F与以线段为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3)   记(AB是(2)中的点),问是否存在实数,使成立.若存在,求出的值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

设递增等差数列的前项和为,已知的等比中项,
(I)求数列的通项公式
(II)求数列的前项和

(本题满分16分)设函数y=f(x)对任意实数x,都有f(x)=2f(x+1),当x∈[0,1]时,f(x)=x2(1-x).
(Ⅰ)已知n∈N+,当x∈[n,n+1]时,求y=f(x)的解析式;
(Ⅱ)求证:对于任意的n∈N+,当x∈[n,n+1]时,都有|f(x)|≤
(Ⅲ)对于函数y=f(x)(x∈[0,+∞,若在它的图象上存在点P,使经过点P的切线与直线x+y=1平行,那么这样点有多少个?并说明理由

(本题满分16分)(Ⅰ)试比较的大小;
(Ⅱ)试比较nn+1与(n+1)n(n∈N+)的大小,根据(Ⅰ)的结果猜测一个一般性结论,并加以证明.

(本题满分16分)A、B是函数f(x)=+的图象上的任意两点,且=(),已知点M的横坐标为.
(Ⅰ)求证:M点的纵坐标为定值;
(Ⅱ)若Sn=f()+f()+…+f(),n∈N+且n≥2,求Sn
(Ⅲ)已知数列{an}的通项公式为. Tn为其前n项的和,若Tn<(Sn+1+1),对一切正整数都成立,求实数的取值范围.

(文科)(本题满分14分)设函数f(x)=·,其中=(m,cos2x),=(1+sin2x,1),x∈R,且函数y=f(x)的图象经过点(,2).
(Ⅰ)求实数m的值;
(Ⅱ)求函数f(x)的最小值及此时x值的集合
(理科)(本题满分14分)已知函数f(x)=ex-kx,x∈R
(Ⅰ)若k=e,试确定函数f(x)的单调区间
(Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号