已知点P是直角坐标平面内的动点,点P到直线的距离为d1,到点F(– 1,0)的距离为d2,且
.
(1) 求动点P所在曲线C的方程;
(2) 直线过点F且与曲线C交于不同两点A、B(点A或B不在x轴上),分别过A、B点作直线
的垂线,对应的垂足分别为
,试判断点F与以线段
为直径的圆的位置关系(指在圆内、圆上、圆外等情况);
(3) 记,
,
(A、B、
是(2)中的点),问是否存在实数
,使
成立.若存在,求出
的值;若不存在,请说明理由.
已知动直线与椭圆
交于
、
两不同点,且△
的面积
=
,其中
为坐标原点.
(1)证明和
均为定值;
(2)设线段的中点为
,求
的最大值;
(3)椭圆上是否存在点
,使得
?若存在,判断△
的形状;若不存在,请说明理由.
已知图像过点
,且在
处的切线方程是
.
(1)求的解析式;
(2)求在区间
上的最大值和最小值.
已知椭圆的离心率为
,直线
与圆
相切.
(1)求椭圆的方程;
(2)设直线与椭圆
的交点为
,求弦长
.
设命题:实数
满足
,其中
;命题
:实数
满足
.
(1)若,且
为真,求实数
的取值范围;
(2)若是
成立的必要不充分条件,求实数
的取值范围.
已知,
,点
的坐标为
.
(1)求当时,点
满足
的概率;
(2)求当时,点
满足
的概率.