一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为
.求关于
的一元二次方程
有实根的概率;
(2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为
.若以
作为点P的坐标,求点P落在区域
内的概率.
如图1,在Rt△ABC中,∠C=90°,BC=6,AC=3,D,E分别是AC,AB上的点,且DE∥BC,DE=4,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:平面
;
(2)过点E作截面平面
,分别交CB于F,
于H,求截面
的面积。
已知圆C:内有一点P(2,2),过点P作直线
交圆C于A、B两点.
(1)当经过圆心C时,求直线l的方程;
(2)当弦AB最短时,写出直线的方程;
(3)当直线的倾斜角为45º时,求弦AB的长.
如图,正方体中,E为AB中点,F为正方形BCC1B1的中心.
(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.
已知两直线和
.试确定
的值,使
(1)与
相交于点
;
(2)∥
;
(3),且
在
轴上的截距为-1.
如图,空间四边形中,
分别是
的中点,且
,
.
(1)求证:平面
;
(2)求证:四边形是矩形.