为了解高二某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
5 |
|
女生 |
10 |
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
下面的临界值表供参考:
(参考公式K2=,其中n=a+b+c+d)
在如图所示的几何体中,四边形 是等腰梯形, , 平面 .
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值.
已知向量
,函数
的最大值为.
(Ⅰ)求
;
(Ⅱ)将函数
的图象向左平移
个单位,再将所得图象上各点的横坐标缩短为原来的
倍,纵坐标不变,得到函数
的图象.求
在
上的值域.
在平面直角坐标系中,以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系。已知直线 上两点 的极坐标分别为(2,0)( ),圆 的参数方程
(1)设 为线段 的中点,求直线 的平面直角坐标方程
(2)判断直线 与圆 的位置关系
已知函数
,
,且
的解集为
.
(Ⅰ)求
的值;
(Ⅱ)若
,且
,求证:
.
设曲线 在矩阵 对应的变换作用下得到的曲线为 .
(Ⅰ)求实数
的值
(Ⅱ)求
的逆矩阵