游客
题文

一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点, 每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:

转速x(转/秒)
16
14
12
8
每小时生产有缺点的零件数y(件)
11
9
8
5

 
(Ⅰ)画出散点图;
(Ⅱ)如果y对x有线性相关关系,求回归直线方程;
(Ⅲ)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?
参考公式:

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知向量,函数
(1)求函数的单调递减区间.
(2)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求上的值域.

已知向量= ,=(1,2)
(1)若,求tan的值。
(2)若||=,,求的值

(1)求的值.
(2)若,,求的值.

已知∈(0,),且,
的值.

已知函数,其中常数
(1)当时,求函数的单调递增区间;
(2)当时,是否存在实数,使得直线恰为曲线的切线?若存在,求出的值;若不存在,说明理由;
(3)设定义在上的函数的图象在点处的切线方程为,当时,若内恒成立,则称为函数的“类对称点”。当,试问是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号