(本题12分)已知椭圆的中心在原点,左焦点为,右顶点为,设点.(1)求该椭圆的标准方程;(2)若是椭圆上的动点,过P点向椭圆的长轴做垂线,垂足为Q求线段PQ的中点的轨迹方程;
已知正方体. (Ⅰ)求证:平面平面; (Ⅱ)求直线与所成角的大小.
(本题14分)已知函数. (1)若,试用定义证明:在上单调递增; (2)若,当时不等式恒成立,求的取值范围.
(本题15分) 如图,已知抛物线,点是轴上的一点,经过点且斜率为的直线与抛物线相交于两点. (1)当点在轴上时,求证线段的中点轨迹方程; (2)若(为坐标原点),求的值.
(本题15分)如图,三棱锥中,底面,是正三角形,,,是的中点. (1)求证:平面; (2)设二面角的大小为,求的值.
(本题14分)已知数列满足:,. (1)求数列的通项公式; (2)若,求数列的前项和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号