(本题满分8分)
已知经过点的圆
与圆
相交,它们的公共弦平行于直线
.
(Ⅰ)求圆的方程;
(Ⅱ)若动圆经过一定点
,且与圆
外切,求动圆圆心
的轨迹方程.
已知命题:函数
的值域为
,命题
:方程
在
上有解,若命题“
或
”是假命题,求实数
的取值范围.
已知函数(
为常数,
为自然对数的底)
(1)当时,求
的单调区间;
(2)若函数在
上无零点,求
的最小值;
(3)若对任意的,在
上存在两个不同的
使得
成立,求
的取值范围.
已知,当
时,
.
(1)证明;
(2)若成立,请先求出
的值,并利用
值的特点求出函数
的表达式.
工厂生产某种产品,次品率与日产量
(万件)间的关系
(
为常数,且
),已知每生产一件合格产品盈利3元,每出现一件次品亏损1.5元
(1)将日盈利额(万元)表示为日产量
(万件)的函数;
(2)为使日盈利额最大,日产量应为多少万件?(注:)
中,设
、
、
分别为角
、
、
的对边,角
的平分线
交
边于
,
.
(1)求证:;
(2)若,
,求其三边
、
、
的值.