设数列的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列的通项公式;
(II)记,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
已知求
(8分)已知函数.
(1)写出它的振幅、周期、频率和初相;
(2)求这个函数的单调递减区间;
(3)求出使这个函数取得最大值时,自变量的取值集合,并写出最大值。
(1)化简:
(2)求证:
(本小题满分12分)
已知椭圆的离心率为
,右焦点为
。斜率为1的直线
与椭圆
交于
两点,以
为底边作等腰三角形,顶点为
。
(Ⅰ)求椭圆的方程;
(Ⅱ)求的面积。
(本小题满分12分)
某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:
![]() 资源 |
甲产品 (每吨) |
乙产品 (每吨) |
资源限额 (每天) |
煤(t) |
9 |
4 |
360 |
电力(kw·h) |
4 |
5 |
200 |
劳力(个) |
3 |
10 |
300 |
利润(万元) |
7 |
12 |
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?